论文浏览

【论文题目】A unified framework with a benchmark dataset for surveillance event detection

【作    者】Zhicheng Zhao, Xuanchong Li, Xingzhong Du, Qi Chen, Yanyun Zhao, Fei Su, Xiaojun Chang, Alexander G. Hauptmann        点击下载PDF全文

【关 键 字】Surveillance event detection, Pedestrian dataset, Pedestrian detection, Cascade CNN

【发表刊物/会议】
    Neurocomputing

【摘    要】
     As an important branch of multimedia content analysis, Surveillance Event Detection (SED) is still a quite challenging task due to high abstraction and complexity such as occlusions, cluttered backgrounds and viewpoint changes etc. To address the problem, we propose a unified SED detection framework which di- vides events into two categories, i.e., short-term events and long-duration events. The former can be rep- resented as a kind of snapshots of static key-poses and embodies an inner-dependencies, while the latter contains complex interactions between pedestrians, and shows obvious inter-dependencies and temporal context. For short-term event, a novel cascade Convolutional Neural Network (CNN)?HsNet is first constructed to detect the pedestrian, and then the corresponding events are classified. For long-duration event, Dense Trajectory (DT) and Improved Dense Trajectory (IDT) are first applied to explore the temporal features of the events respectively, and subsequently, Fisher Vector (FV) coding is adopted to encode raw features and linear SVM classifiers are learned to predict. Finally, a heuristic fusion scheme is used to obtain the results. In addition, a new large-scale pedestrian dataset, named SED-PD, is built for evalua- tion. Comprehensive experiments on TRECVID SEDtest datasets demonstrate the effectiveness of proposed framework.

【发 表 年】2017

【发 表 月】9

【类    别】计算机视觉


Tel: 086-010-62283118 邮编:100876
地址:北京市海淀区西土城路10号北京邮电大学教二楼多媒体中心
北京市海淀区西土城路十号113#信箱
版权所有:北京邮电大学多媒体通信与模式识别研究室 京ICP证14002347号